Nordhaus-Gaddum type results for the Harary index of graphs

Authors

Abstract:

The emph{Harary index} $H(G)$ of a connected graph $G$ is defined as $H(G)=sum_{u,vin V(G)}frac{1}{d_G(u,v)}$ where $d_G(u,v)$ is the distance between vertices $u$ and $v$ of $G$. The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph $G$ of order at least $2$ and $Ssubseteq V(G)$, the emph{Steiner distance} $d_G(S)$ of the vertices of $S$ is the minimum size of a connected subgraph whose vertex set contains $S$. Recently, Furtula, Gutman, and Katani'{c} introduced the concept of Steiner Harary index and gave its chemical applications. The emph{$k$-center Steiner Harary index} $SH_k(G)$ of $G$ is defined by $SH_k(G)=sum_{Ssubseteq V(G),|S|=k}frac{1}{d_G(S)}$. In this paper, we get the sharp upper and lower bounds for $SH_k(G)+SH_k(overline{G})$ and $SH_k(G)cdot SH_k(overline{G})$, valid for any connected graph $G$ whose complement $overline {G}$ is also connected.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

nordhaus-gaddum type results for the harary index of graphs

the emph{harary index} $h(g)$ of a connected graph $g$ is defined as $h(g)=sum_{u,vin v(g)}frac{1}{d_g(u,v)}$ where $d_g(u,v)$ is the distance between vertices $u$ and $v$ of $g$. the steiner distance in a graph, introduced by chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. for a connected graph $g$ of order at least $2$ and $ssubseteq v(g)$, th...

full text

Nordhaus-Gaddum Type Results for Total Domination

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or product of a parameter of a graph and its complement. In this paper we study Nordhaus-Gaddum-type results for total domination. We examine the sum and product of γt(G1) and γt(G2) where G1 ⊕G2 = K(s, s), and γt is the total domination number. We show that the maximum value of the sum of the total domination numbers of...

full text

Some nordhaus- gaddum-type results

A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or product of a parameter of a graph and its complement. In this paper some variations are considered. First, the sums and products of ψ(G1) and ψ(G2) are examined where G1 ⊕ G2 = K(s, s), and ψ is the independence, domination, or independent domination number, inter alia. In particular, it is shown that the maximum valu...

full text

The Nordhaus-Gaddum-type inequalities for the Zagreb index and co-index of graphs

Let k ≥ 2 be an integer, a k-decomposition (G1,G2, . . . ,Gk) of the complete graph Kn is a partition of its edge set to form k spanning subgraphs G1,G2, . . . ,Gk. In this contribution, we investigate the Nordhaus–Gaddum-type inequality of a k-decomposition of Kn for the general Zagreb index and a 2-decomposition for the Zagreb co-indices, respectively. The corresponding extremal graphs are ch...

full text

Nordhaus-Gaddum inequalities for domination in graphs

A node in a graph G = (V,E) is said to dominate itself and all nodes adjacent to it. A set S C V is a dominating set for G if each node in V is dominated by some node in S and is a double dominating set for G if each node in V is dominated by at least two nodes in S. First we give a brief survey of Nordhaus-Gaddum results for several domination-related parameters. Then we present new inequaliti...

full text

A Note on Nordhaus-gaddum-type Inequalities for the Automorphic H-chromatic Index of Graphs

ing and Indexing: Zentralblatt MATH. AUTHORS INFO ARTICLE INFO JOURNAL INFO 2 Nordhaus-Gaddum-type inequalities

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  181- 198

publication date 2017-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023